Robust Principal Component Analysis Using Statistical Estimators
نویسندگان
چکیده
Principal Component Analysis (PCA) finds a linear mapping and maximizes the variance of the data which makes PCA sensitive to outliers and may cause wrong eigendirection. In this paper, we propose techniques to solve this problem; we use the data-centering method and reestimate the covariance matrix using robust statistic techniques such as median, robust scaling which is a booster to datacentering and Huber M-estimator which measures the presentation of outliers and reweight them with small values. The results on several real world data sets show that our proposed method handles outliers and gains better results than the original PCA and provides the same accuracy with lower computation cost than the Kernel PCA using the polynomial kernel in classification tasks.
منابع مشابه
Principal Component Analysis Based on Robust Estimators of the Covariance or Correlation Matrix: Innuence Functions and Eeciencies
A robust principal component analysis can be easily performed by computing the eigenvalues and eigenvectors of a robust estimator of the covariance or correlation matrix. In this paper we derive the innuence functions and the corresponding asymptotic variances for these robust estimators of eigenvalues and eigenvectors. The behavior of several of these estimators is investigated by a simulation...
متن کاملAn application of principal component analysis and logistic regression to facilitate production scheduling decision support system: an automotive industry case
Production planning and control (PPC) systems have to deal with rising complexity and dynamics. The complexity of planning tasks is due to some existing multiple variables and dynamic factors derived from uncertainties surrounding the PPC. Although literatures on exact scheduling algorithms, simulation approaches, and heuristic methods are extensive in production planning, they seem to be ineff...
متن کاملAsymptotic Distributions of Estimators of Eigenvalues and Eigenfunctions in Functional Data
Functional data analysis is a relatively new and rapidly growing area of statistics. This is partly due to technological advancements which have made it possible to generate new types of data that are in the form of curves. Because the data are functions, they lie in function spaces, which are of infinite dimension. To analyse functional data, one way, which is widely used, is to employ princip...
متن کاملFast and robust bootstrap
In this paper we review recent developments on a bootstrap method for robust estimators which is computationally faster and more resistant to outliers than the classical bootstrap. This fast and robust bootstrap method is, under reasonable regularity conditions, asymptotically consistent. We describe the method in general and then consider its application to perform inference based on robust es...
متن کاملNonlinear Robust Regression Using Kernel Principal Component Analysis and R-Estimators
In recent years, many algorithms based on kernel principal component analysis (KPCA) have been proposed including kernel principal component regression (KPCR). KPCR can be viewed as a non-linearization of principal component regression (PCR) which uses the ordinary least squares (OLS) for estimating its regression coefficients. We use PCR to dispose the negative effects of multicollinearity in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1207.0403 شماره
صفحات -
تاریخ انتشار 2009